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Numerical Analysis of Spectral Properties 
of Coupled Oscillator Schrodinger Operators 

I. Single and Double Well Anharmonic Oscillators 

By D. Isaacson*, E. L. Isaacson**, D. Marchesin*** and P. J. Paes-Leme** 

Abstract. We describe several methods for computing many eigenvalues and eigenfunctions 
of a single anharmonic oscillator Schrodinger operator whose potential may have one or two 
minima. One of the methods requires the solution of an ill-conditioned generalized eigen- 
value problem. This method has the virtue of using a bounded amount of work to achieve a 
given accuracy in both the single and double well regions. We give rigorous bounds, and we 
prove that the approximations converge faster than any inverse power of the size of the 
matrices needed to compute them. 

We present the results of our computations for the g: s4 theory. hese results indicate 
that the methods actually converge exponentially fast. We conjecture why this is so. 

1. Introduction., In statistical mechanics, quantum chemistry, and quantum field 
theory [1], numerical techniques for solving eigenvalue problems in a large or an 
infinite number of variables are required. A procedure is described in [1] for 
dealing with the case of a large system of coupled anharmonic oscillators. 

This paper provides the initial step of the procedure. That is, an algorithm is 
devised to find efficiently and accurately the eigenvalues and eigenfunctions of one 
anharmonic oscillator for the case of either a single or a double well region. We 
describe simple algorithms including a method which seems to be applicable to 
multi-well problems in general. This method involves an overdetermined basis and 
allows a careful fitting of the levels associated with each well. The multi-well 
method has the desirable feature that the amount of work needed to compute the 
first N eigenvalues and eigenfunctions to a given accuracy is uniformly bounded in 
the entire parameter space. The algorithms we describe are convergent and yield 
rigorous bounds on the accuracy of the approximate eigenvalues and eigenfunc- 
tions. 

We remark that there is a large literature on the numerical study of anharmonic 
oscillators. One of the earliest articles to present bounds for the single well problem 
is [2]. We refer the reader to the recent article [3] for more references. 

In Section 2 we formulate the problem, and in Sections 3-6 we describe the 
algorithms. Section 6 contains an error analysis of the algorithms including 
derivations of the rigorous bounds mentioned above. In Section 7 we describe the 
results obtained from applying our algorithms to the :44:1 theory. 
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We prove in Appendix 5 that the approximate eigenvalues and eigenvectors 
converge faster than any negative power of the size of the matrices used to 
compute them. We conjecture that the convergence is actually exponentially fast. 

2. Formulation. In order to illustrate the algorithms, we consider the Hamiltonian 
operator 

I (d2 24\ 1 d 2 
(2.1) H _ 2 ( dx2 + cx 2 + dX4 +e e) 2 2( dX2 ) 

2dx2 

where d is any positive number, and c, e are aribtrary real numbers. We use the 
following notation. The eigenvalues of H are Ej, j = O, 1, 2, .. ., with the corre- 
sponding eigenfunctions 4j1,j = O, 1, 2, .... Here, Eo < E1 < E2 < ..., and 

(2.2) H4j = Ej+4>. 

We remark that the operator H commutes with the unitary operator 

(2.3) U(x) _ (- x). 

Therefore, the subspaces of L2(R) of even function ((C)e) and odd functions (9C,) 
are invariant under H, and computing the lowest N eigenvalues in each of these 
subspaces provides us with the lowest 2N eigenvalues of H. 

In each algorithm we choose a basist {(0} = {(j(x)}J0 O of L2(R) (actually, we 
choose bases {je} of 5(e and {(0j) of Ho) and observe that for some coefficients 
{(t7k)} 

n 

(2.4) 4,1 = lim I v5'n4k(x). 

Substituting (2.4) in (2.2) and taking the inner product with +, 1 = 0, 1, 2, .... 
yields 

( 
H* 

y 
lim 

k- vJ4 k ) ( l i VJ.k4)<nk"), 

n n 

lim 2 <H41, cPk>tyk 
= lm E>j K4<<, Ek)k>VJ,k 

(2.6) Hl,k KckH, H =k>, 1, k = O,... , 

(2.7) Sl,k -K+1n ok>o 1 k = O,kno ., Pk 

and v>(n) is the (n + 1) component vector 

V5(n) -(v5n), V>(n) , 

Then Ef(n) is an approximation of E1, and 
n 

44(n)(x) = z Vy(,k)+(X) 

kk=0 

t By a basis of a space we mean a subset whose linear span is dense in that space. 
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is an approximation of Ap(x). It follows from (A5.3) in Appendix 5 that the Ej(n) are 
Rayleigh-Ritz upper bounds for the EL. 

The algorithms, therefore, consist of the following steps: 
Step 1: Choosing a basis {4y}jO. 
Step 2: Computing the matrix elments (2.6), (2.7). 
Step 3: Solving the matrix eigenvalue problems (2.5). 
Step 4: Performing an error analysis. 
The last step is optional since it is used only to determine how the algorithms are 

converging. The analysis consists of computing (for increasing sequences of l's and 
n's) 

(2.8) AEj(n, 1) -E>(F) -E(n)l 

(2.9) AL4/(n, 1) 1144(' - (n 

and the "operator residuals" 

(2.10) rj(n) H_ 4) - j 

The information above can be used to derive bounds on the actual errors E -n) 

El, Ill;/>n)-j 4ijI. (See Section 6.) 
We now describe each of the four steps in more detail. 

3. Step 1: Choice of a Basis. In order to keep the matrix eigenvalue problem (2.4) 
small in size, the basis functions oj (actually oje and q0j) should be good approxima- 
tions for the eigenfunctions 4ij. Two other practical requirements are: (i) the matrix 
elements (2.6), (2.7) should be easy to compute, and (ii) the eigenvalue problem 
(2.5) should be easy to solve numerically. 

We observe that for c > 0 and d= 0 the eigenfunctions 41 of H are just the 
Hermite functions Q (x) given by 

(3.1) ?() ( e 

(3.2) Q a(x)-(2 j!f'12[a1/2x - a1/2d/dx]1So(x), = 1, 2, 3, ... 

where a is chosen to minimize the Rayleigh quotient 

(3.3) R(a) =_ <s20, H9o>1<02, 0o>. 

We remark that a can be computed in closed form. 

V (x) 

x 

FIGRU.E 1 
V(x) vs x in the single well region 

For c > 0 and d 74 0, the potential has approximately the same shape near its 
minimum (x = 0) as it does for d = 0. (See Figure 1.) In this region of the 
parameter space, we choose {(f } to be the even Hermite functions and {4fj} to be 
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the odd Hermite functions. (We refer to this region of parameter space as the 
"Gaussian region", and we call each basis above a "Gaussian basis.") 

For c < 0 and d small, the potential has two widely separated minima (see 
Figure 2), and the Gaussian basis yields poor approximations for the eigenfunc- 
tions. In this region of the parameter space, the eigenfunctions are approximated 
well by linear combinations of Hermite functions translated to the minima of the 
potential [4], [5]. 

JV(x) 

x 
FIGuRE 2 

V(x) vs x in the double well region 

Therefore, in this region we use the bases defined by 

Q- + 
(3.4e) j 

21 /2 j = O 1 2 

(3.4o) (0- 2j = O 1" 2~ ... 

where 

(3.5) Q,-(x) -=(a(x-xO)), j2f+(x) _Q(-a(x + x0)). 

The constants a and xo are determined so as to minimize the Rayleigh quotient 

(3.6) R1(a, xO) <00e, H(&e > /K<oe, tOe >. 

(We refer to this region of parameter space as the "Ising region", and we call each 
of the bases (3.4) an "Ising basis" because of the relation between the double well 
problem and the one-dimensional Ising model [5], [6].) It is shown in Appendix 1 
that {f j} and {4(pj} are nonminimal basest of ')e and )CO, respectively. 

4. Step 2: Computation of the Matrix Elements. In this section we describe the 
methods for computing the matrix elements (2.6), (2.7). We restrict our attention to 
the even subspace t3Ce since the formulas in )CO are similar. 

For the Gaussian basis the matrix, S') is the identity since the Hermite functions 
are orthonormal. Also, the matrix elements Hjk can be computed easily using 
recursion relations for the even (or odd) Hermite functions yielding a five-diagonal 
band matrix. (An explicit formula is given in Appendix 6.) 

To compute sin) for the Ising basis (3.4e), we have 

Si,k K ke 4k> 2 <Q + Qi &2k + Qk > = 
3j,k + <QJ I Qk > 

tt By a nonDiinimal basis we mean a basis which has a proper subset that is also a basis [15]. 
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We have used the identities 
(4.2) URj = Qj, U0 =Q 

and the fact that U given by (2.3) is unitary. The matrix elements UjLk <Qk- > 
(which are a representation of U with respect to either orthonormal basis {(Qj+} or 
{Qp-)) are Gaussian integrals which can be computed accurately by Gaussian 
quadrature [7]. 

For Hj,k we have 

hik = Kje, H)ke> = + Qj+, H(Qk + Qk)> 

= <Qj, HSk > + <Qj, HQk>. 

We have used (4.2) again and the fact that H and U commute. 
The infinite matrix H +, with elements HI+J= <j+, HO+>, is a nine-diagonal 

band matrix because of the form of H and the recursion relations for the Hermite 
functions. To compute <Qj+, HQ -j>, we expand Qk with respect to the orthonor- 
mal basis (Q{+ } obtaining 

00 00 

<Qj+, HQk > 2 <j+, HS2 > <9 , Qk > =EHj, Ulk 
1=0 1=0 

(4.4) j+4 

= EHj,+ Ul,k. 
1=j-4 

The last equality follows since H + is nine-diagonal. We may therefore write (4.1), 
(4.3) as the infinite matrix identitiest 
(4.5e) S = I + U; H = H+ +H+U= H+S. 

In the odd subspace 9C4 the formulas become 
(4.5o) S= I- U; H= H+S. 

5. Step 3: Solution of the Eigenvalue Problem (2.5). In this section we present 
methods for solving 

(5. 1) H(n)Vp(n)= ()n p) 

in both the Gaussian and Ising regions. Again, we restrict attention to the even 
subspace 9e, 

In the Gaussian region (5.1) becomes 

(5.2) H(n)V(n) = -(n)V(n) 

where H(n) is five-diagonal. We solve (5.2) in a conventional manner using Eispack 
(8]: First, H(n) is reduced to tridiagonal form; then the eigenvalues of the resulting 
system are found by the QR algorithm; lastly, the eigenvectors are determined by 
inverse iteration. 

The problem (5.1) is more difficult in the Ising region. Since S'(n is the Gram 
matrix of the basis {je}n0 and since, as shown in Appendix 1, the bases {4j} and 
{0jf0} are nonminimal, the matrix S "n is nearly singular. Therefore, (5.1) is ill- 
conditioned. 

m We use the same symbol to denote an operator and a corresponding infinite matrix. The context 
should determine which meaning is desired. 
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We now present two methods which overcome this defect. The second method is 
preferable, however, since it is two to five times faster than the first method. 

The first method derives from the following observations (see Appendix 2): H 
and S') have nearly the same null space, and they almost commute. Therefore, we 
first diagonalize sin) 

S = QDQT, 

where Q is the orthogonal matrix of eigenvectors of sin), and D is the diagonal 
matrix of eigenvalues. We then restrict H(n) and S(n) to the subspace spanned by 
the eigenvectors of sin) corresponding to those eigenvalues larger than a preset 
tolerance. That is, we consider the smaller problem 

(5.3) H(n)n) E(n) n) 

where 
f(n) - QTH(n) = TS(n) 

and Q is obtained from Q by deleting the eigenvectors corresponding to small 
eigenvalues. vn) is obtained from ;gn) by 

(n) 56(n) 

Since D is a diagonal positive matrix, (5.3) can be solved by standard methods. 
The choice of the tolerance mentioned above is delicate. Too large a tolerance 

degrades the accuracy of the solution because useful information is neglected. Too 
small a tolerance introduces spurious unstable eigenvalues. Using the CDC 6600 
computer (with fourteen decimal digits of accuracy), we found satisfactory values 
of the tolerance to range from 10-8 to 10- 10. 

In the second method we eliminate the (nearly) dependent basis elements from 
{4je}jn0 using a Cholesky decomposition with maximal pivoting (see Appendix 3). 
The matrix g(n) which results is strictly positive. Therefore, after replacing sin) with 
S(n) H(n) with -t(n), and v) with j;n) using the independent basis elements, we can J J 

use the following standard procedure to solve (5.1): Make the change of variables 
v = D /2L T-(n), where g(n) = LDLT is the Cholesky decomposition. Then solve 
the resulting symmetric eigenvalue problem 

(LD l/2)-1 
- 
(n)(D /2LT)-1V = E. 

6. Step 4: Error Analysis. In order to determine how the algorithms are converg- 
ing, we compute the following quantities: 

(6.1) AEj(n, 1) _jEf -En) 

(6.2) A4jl(n, 1) -II4n' ) - 4;5'(nI 
and the "operator residuals" 

(6.3) rj(n) =I H5xp(n)- E(n)415(n)I. 
The roles that AEj and A+>j play in determining convergence are clear. Tab1es are 
presented in Section 7. However, the rj(n) are more important since they allow us 
to compute rigorous bounds on the errors in the approximate eigenvalues and 
eigenvectors. 
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Let E denote the eigenvalue of H closest to El/n), let 41 be the corresponding 
eigenvector, and let A denote the distance between E.(n) and the next closest 
eigenvalue of H. Then [9]-(12] 

E In)- El < rj(n), IE (n) - El < rj(n)2/A, 

(6.4) lj4"- < j (1 + j(n ) )1/2 

We use these inequalities to obtain upper and lower bounds for E by computing a 
rigorous lower bound for A. Let 8j _ min{lEJn) -jEj I, I1(n)-EJ+)jj} and rj(n) 
be either rj- (n) or rj+ (n) according to whether Ej(") is closer to E(') or EJ+)1 
Then, for n sufficiently large, A > j- Fj(n), and consequently 

(6.5) | EJ( - Ejl < rj(n)2/ (-j - 

We now prove the lower bound for A in the case when Ej(n) is closer to EJ() than to 
Ej1()l. From Appendix 5 we can choose n sufficiently large so that 

Ej_, E(n), < EX E(n) < E>+ E(n). E> jEP? < Ej j?E < j~**- 1 1+1 j+1* 

In this case Ej(n) is closer to Ej+ I than toE 1. Thus 

AS =EJ E+ En(n) = Ep(n) -E(n) - (E(n) - E 1). 

From the definition of 8j and Fj(n) we have 
A > j - rj+I(n) = 6j - ij(n). 

The case where Ej(n) is closer to Ej.(), than to EJ(+)1 is similar. 
The gap A may be estimated accurately by 6) when rj(n) and ij(n) are much 

smaller than d>. Typical values of rj(n) and rj(n)2/ 8 are given in Section 7. 
Calculation of the vector differences (6.2) is straightforward: if n > 1 and we 

write >(l) - 4/n) = w kk, then 

ll44'~ - in||2 = 2 <k'f>WkWm = WTS(n)W, 
k=O m=O 

where w = (w,.T. , . 
Calculation of the operator residuals is more complicated. In Appendix 4 we 

derive formulas for computing these in each basis. 

7. Application to :04:1. The :44:1 theory is the study of the anharmonic oscillator 
operator 

(7.1) H = H(g) (1/2)[ -d2/dx2 + (1- 3g)X2 + gX4 + 

where 0 < g < oo, and cg is a constant chosen so that the lowest eigenvalue of 
H(g) is 0. We note that as g goes from 0 to oo the potential changes its shape from 
having one to having two minima as illustrated in Figures 1 and 2. 

As in the text we denote the eigenvalues and eigenfunctions of H(g) by 
E = Ej(g) and 4-, = 4,1(g). When g = 0 we have [13] Ej(O) = j, and 4,j(O) are just 
the Hermite functions. As g -> Xc [2], [3], [4], the eigenvalues become degenerate in 
pairs, i.e., 

E2j(g) - E2j+1(g) - (6g)1/2j forj = 0, 1, 2, . 
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and the eigenfunctions approach an "Ising basis". In fact the precise rate of 
asymptotic eigenvalue degeneracy as g -- oo has been established [14]. 

We computed the first twenty eigenvalues and eigenfunctions of H(g). Their 
behavior as functions of g are displayed in Figures 4, 5 and 6. 

Numerical values of AEj(n, n + 10) and Aib(n, n + 10) (defined by (6.1), (6.2)) 
for the Gaussian basis are given in Table 1. Values for the Ising basis are given in 
Table 2. They seem to show that Ej(n) and 4f(n) are converging with increasing n. In 
fact Figure 3 suggests that E.(') is approaching its limit exponentially fast. In 
Appendix 5 we give a simple proof that E.(n) and %P(n) converge to Ej and %j faster 
than any power of n1. 

Tables 1 and 2 include the operator residuals rj and tj2/&. We remark that the 
"6computed" residuals provide rigorous bounds on the approximate eigenvalues and 
eigenvectors only if infinite precision arithmetic is used. We do not discuss here the 
effects of rounding in the computation of rigorous bounds; however, we point out 
that when rj2/6j z 10-23 and E(n) has been computed using only 14 digits it is 
highly unlikely that jEj' -L O(10E23). 

2 5 

n=3 40 50 60 70 80 90 100 

FIGURE 3 

-ln[Efj)-E,("+10)] (Gaussian basis) 

(The curves become flat when rounding prevents E(n) from imFroving) 
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j=18 
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n=40 60 80 100 120 140 160 180 

FIGURE 4. Ej( g) vs g 

Bo , 

6. I 

0.00 1.00 2.00 3.00 4.00 5 00 6.00 7 00 8.00 9.00 10.00 

FIGURE 5. Ej(g) vs g 
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C> CD C)> CD C) C) C> C). C) C)> CD C> CD c~ CD 

CO c--C c-C C-I c-C c-I c-C CC CC 
C~ ~ ~ CC c-Ic-Cc-c-oC 

CC 
CCi 

CC 

C- C CC -C C C CC C C C ,-4 -CC -C CC CC CC CC CC CC C 

C) C)> CD, C) C) CC> C> C:>CC C) C>C>) C C )C Cc,C 

c-C -4ciC) C') CC C:) C-C- 

CD C) ) >CD C) CC DC> C CD )C )C C) C>) CC CC CC 

CO CCC )COCiC C CC CO i-C C) CC COx CO C-C 

c-i ')CCC-C CO c-;iCC 

c-i CCC) C C t C c-C c--i C--i c-~~~~00-i cCc- CC) 4 
CC~ C) C)> CD C) C) C C>C> C>C)C CD ) CD cC CD C) CD C) 

c--C C-- CC c--CC C) CO) tC c- - --C CO C') -C CO CC "a' c-- 

C)~ CC3 C) C) C) C) C) CC C) C> C) C) C) C> CD C> CD C> 

c-C-iC') ) c-C C 0)c- (DC rCC c--C CO C0 ) CC c-- C') CO 

c-i C C C c-C cC c- c-C c- 
cIc-ic)C 

CO CO C 

Ci) C)~~~~~~~~~~~~~~z C) C) C)> C) C)> C)> C:) C): C) C) C) C)> C) C) C) C) C) 

C) CC CC CC CC CC C C C C) CC C CC Cx CC CC C C 

c-C CC CO C) CC c- -c- CCC') c-C tn C' : CCCq "t CO CO 

C) C) CCC ~~~~~~~C) C C) C) C C C 

c--C --C C) C) C) C) C) C)> C)D C) C) C) C) CD C) C) C) C) 

c- cIC COD C' - C) C CC- c-C ') t') CC Cc r- -T CC~ c--C) 

c-i C') CC CC~ c-C _- c-C CC c-I c-C c- ) C C CC CC t- CO 

C)C )C) C )>C>C C)> C)C)C)> C) C)> C) C) C) C)> C) C) C)> 

CO c-I ') C)> CC c- c- C- -C-I CC c- c-i CC -C c-C c-C C:) c-C 

c-I c- c -i CC') IT C) C) 

C)C) C) C) C)Z C): C:) C) C) C)) C:C) C)> C)~ C), C) C):C 
c-4-C -I c- cI - c-I c-I c-I c-4 -I - c-I c-C4 - -I I -C 

C) CC CC CC CC CC C CC CC C C)- CC C CC CC CC CC CC CC C 
CC CO C:) CC C) CO LA C CC CO CC c-C c- -- C C) C-C 

C CO c- --C c-A c--C c-C c-i C') CO CCO CO 
I- c I C C C C C C C C') c-i c- C) I I I C 

C) C)> C)~ C)( C CCC) C)C) C) C) C)> C) C) C) C) C)( CCC) 
c-I c-C c-- c-C c-I c-A c-I c-A c-C CO c-C c- c -C - c-C c- c-I c- c-C 

CO CCC CCC C C C CC x CC -C CC C CC CC CC CC CC CC C 
c- c- CC) C- CC O C -I-4 'r r CO C C)'t- C') -C CC - c-i c- 

C) c-I c-I c-I CCC) C) C) C 

c-I c-C c-I c-I c-~~~Ic- c-I cI cCc- IcC cI cI cI cC cI IcC c 
CO C CC> CC CC CC CC CC CC CC CO -CC CC CC CC CC CC CC CCl CC 

c-"I cC -C c- ci ') 
) 

)c-I c- c-C 

_ 

C)N 

C C)4 CC) CC)tl)l CCC) C)CC)CC) CC) CCC)- C) 

C) CC )C CC CC) C C) C, CC C C C> Co CC7 CC CC C) CC> CC CC CC CC 

t'l 0)Ln 00 C)lI1)- C)C-C> L) ) - CCC) C) J) C) 

C C-iCC> C> O >C) C>iC. O C C c--i CCCCOC) Ci C~~CC CO r- I 
oC-, c-4C c-I C aC 

C r4T co 
CC CCI CC CC 

CO CO~~~~~~~~~~~~~~A 4- 4- - 4- 4 
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FIGURE3 6. Lj( g) vs g 
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FIGURE 7. E;(g) Vs g 



SINGLE AND DOUBLE WELL ANHARMONIC OSCILLATORS 285 

Appendix 1: Nonminimality of the Ising Basis. In this appendix we show that the 
even Ising basis (3.4e) is a nonminimal basis for the subspace 9'e of even square 
integrable functions. In fact, we prove that the subset {f ,'}7 ) is a basis that also is 
nonminimal. Similar results hold in 9C, with the odd Ising basis (3.4o). 

THEOREM Al. Let _Uj?? be any orthonormal basis of L2(R) with Q2j even and 

Q2j+ Iodd. Define 

(x) = 
Qj(x + xO), e(x) -2 /2(- j(x) + 

Then the span of {{2ej})j? o is dense in the subspace 9Ce of even functions of L2. 

Proof. Define the operator S: 9X{eo> 'e by 

(S,)(x)- (x) + 0(-x), 
where e o {4,(x) E L2(R): 4b(x + xo) = %(-x + x0)} is the space of even func- 
tions about xo. Since 02e = 2- 1/2Sj, {j } is an orthonormal basis of e(o, and S 
is bounded, it suffices to show the range of S is dense in XJCe. 

So let X E 9Ce be such that <X, S4P> = 0 for all 41 E 9(eo. We will show that X is 
zero. 

Since X E %Ce, a change of variable gives 0 = <X, Sip> = 2<x, 4,> for all 41 E 

Neo. Therefore, X is odd about Xo. Since X is also even about the origin, it follows 
by successive reflections that any such X with finite norm is zero. 

THEOREM A2. With the notation of Theorem A1, if QO is positive, then to 
e is a 

nonminimal basis of 9Xe. (^ denotes Fourier transform.) 

We remark that the restriction on gO can be relaxed considerably. 
Sketch of Proof. We have shown already that {foL} is a basis. To prove 

nonminimality, we show poe E span{o2ej})j'1; i.e., II4 -, I a.42 e II can be made 
small by an appropriate choice of the constants. In fact, we will determine 
constants boNj ... , b$N so that IiN=0 b is small, but boN is bounded away 
from zero. 

A simple calculation shows 

oe (t= 21/2COS X X2n() 

Therefore, by the Plancherel theorem, 
N N N 

(A3*) || o e = 2 CO2/2 ||cos xO bA 

n=O n=O n-O 

Now, take a function f(s) which is a sum of approximate delta functions at two 
symmetric zeros of cos (xo, say ? iT/2xo. Then licos {xof()tI1 ps small. 

Since the Fourier transform is unitary on Ce, {u2j}J) O is an orthonormal basis. 
Expanding f as f = .n,= bno22n and then truncating yields the desired coefficients. 
Clearly, (A3.1) is small, and bo = <f, QO> 00(eT/2x0) + QO(-7/2x0) is bounded 
away from zero. 

Appendix 2. Properties of the Generaized Eigenvalue Problem. We describe 
properties of the generalized eigenvalue problem which motivate the first method 
explained in Section 4. 
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From (4.5e), and a similar computation, 

(A2.1) H=H+S=SH+, 

where S is a matrix representation of a bounded operator and H + is a matrix 
representation of an unbounded positive definite operator. (We ignore questions 
about domains in the following and assume the matrices in question are restricted 
to operating on rapidly decreasing sequences.) 

It follows from (A2. 1) that H and S commute and (since H + is positive definite) 
that they have the same null space. 

S has a large null space. In fact, if X E S is an odd function, then its 
components {v,) with respect to the basis {S, } are a rapidly decreasing null 
sequence for S because 

00 00 00 

Sjsv = z Oje, Of >eV = 2 E Qj + J, 9 + + >v, 
1=0 1=0 

(A2.2) = E <Q>+ + Q>-, Ql >vz = 2l/22<tte E vQ- )~~~~~~~~~~~~~~~~~~~~~~~I~ j++ >v,= 1/ (A2.2) =j K t l l 
1=0 1=0 

- 2l/2K40e, X> = 0. 

We observe that the finite matrices Sin) and H(n) do not commute and do not 
have zero eigenvalues. They weakly commute in the sense that any fixed (n- 
independent) element of (H(n), S(n)J tends to zero as n tends to infinity, and they 
have approximately a common "spurious" space of eigenvectors with very small 
eigenvalues. 

Appendix 3. The Cholesky Decomposition With Maximal Pivoting. The purpose 
of this method is to find a permutation f4j }n .0 of the original basis so Sthat 
the "most independent" elements are first. Thus, the "most dependent" elements 
are last and can be eliminated easily from the original basis. 

The Cholesky decomposition 

(A3.1) S = LDLT 

of the Gram matrix S = s(n) of the original basis is particularly well suited for this 
purpose. For, the diagonal elements of D satisfy 

Dk,k = det S(k)/det 5(k -1), 

and the right side is the square of the distance from 4k to the hyperplane spanned 
by f0, . .. ., k- . We are thus led to the following pivoting strategy in the 
calculation of (A3. 1): 

(a) Choose ?jo to have maximum norm. 
(b) Assuming pjo' ... 'cjl have been chosen, choose cAk so that the new Dkk iS 

maximal. 
Therefore, fjk is farther from the span of *o'... 4k than any of the remaining 
basis elements. 

To eliminate the "most dependent" elements, we omit those elements for which 
Dk,k is less than a prescribed tolerance. (The remarks on the tolerance in Section 5 
apply here as well.) Since the diagonal elements decrease in this method, we simply 
stop the procedure when the first small diagonal element is found. 
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We remark that this algorithm is applied to a finite set for several reasons. First, 
for an infinite basis there is no guarantee that there is any element fj which is 
"most independent" of the previous ones. Furthermore, if a sequence {,jk} is 
found, it will not necessarily span the original space. However, minor modifications 
can be made to overcome both of these obstacles. 

Appendix 4. Calculation of Operator Residuals. We derive explicit formulas for 
the operator residuals (6.3) in terms of quantities previously calculated in Section 4. 
Throughout this appendix we let P,, denote orthogonal projection onto span{41j>o0 
for both the Ising basis and the Gaussian basis. 

Formulas in the Ising Region. Using the Ising basis, we get 

(A4. 1) (n)2 = ||I(H - 2n)4,(n)ll2 = (j4(n) H24,(n)) 

-2E(n)(4j(n), H4J(n)) + E(n)2< (n), 4p(n) 
However, 

(A4.2) <(n), H45n)> - (n), PHP v,(n)> = E (n)(n) (n)), 

since P, l) - A ad EJ(n)4adn). Substituting (A4.2) in (A4. 1) yields 

(A4.3) r1(n)2 = (44n) H244(n)) - E(n)( 4(n), 1p(n)) 
We now evaluate the first term without calculating the matrix elements of the 
operator H2 directly. In 9JCe we have 

n 
(A4.4) (45n) H2445)) j I vjv )k()<g, H24[), 

k,l=O 

(A4.5) <?Oe, H20fe) = 2-'<Q+ +Q 2, H2(gj + Q-)> 

= <Qk H2 Q > + Qk, H20-7> 
Now, 

00 

<Qk, H2Q, = <HQk, HU+> = (H +, <Q+ H+ >Q+ 
m 0 

00 

(A4.6) = 2 <HQ, Q+><Q+, HQ> 
m=O 

M= M2 

= <Qk aHQ+ ><Q+, HQz>, 
m=M 

where M2 = min{k, 1) + 4, M1 = max{k, 1, 4) - 4. For the last term of (A4.5) we 
obtain, similarly, 

k+8 

(A4.7) Q+, Hkg-> = E KQ E2 H2-> 
m=k-8 

Equations (A4.6), (A4.7) reduce the calculation of (A4.3) to that of the matrix 
elements of H + and S which were determined in Section 4. We remark that it 
would not have been difficult to compute the matrix elements of H2 directly, and 
for other operators this may be advisable. 
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Formulas in the Gaussian Region. Letting Qn -I-Pn, we get 

rj(n)2 =|j(H -E(n))Ip(n)112 -j((Pn + Qn)(H-E(n))(pn + Qn)l(n)1|2 (A4.8)Jjj 
=11 Qn H%pjn)112 j=11 

since P1 (H - Ej = 0 = Q ipj(n 
Now write 

(A4.9) H = A + B, 

where A is the Hermite operator with eigenfunctions {f0} and B is the remaining 
fourth-degree polynomial. It follows that Qn commutes with A so that 

rj(n)2 1IQnB4i(n)I2 = jjB(I4- Pn)B41)I2 
=(A4 ) +(n) B2(4)n) - ( jAn),n pB(n)> 

For the first term we have (writing 4Jn() = In vk) 
n 

(A4.11) (ap(n), BA(n)) - 2 KQk, B21v>v2v 5nn), 
k,l=O 

and a calculation similar to (A4.6) yields 
00 

(A4.12) <Qk, B20,> = 2 <Kk, BOm><Km, BQ,>. 
m=O 

Similarly, we obtain for the last term of (A4. 10) 
n 

(A4.13) (+p() BPnB425 f) - 2 <Kk' BPnBQj>vj5kv}V 
k,l=O 

and 
n 

(A4.14) <Kk, BPnBR21> = 2 <ak BQm><Km, B,>. 
m=O 

Substituting (A4.1 1-14) into (A4.10) gives 
n N 

(A4.15) rj(n)2 = M K =nn+ 2a Bm,kBmI] V4~k)Vj~nP 
k,l =M m =n+l1 

where 

(A4.16) M max{0, n - 3}, N min k + 4, 1 + 4}, BmRk -<m BQk>- 

We have used the fact that <Qm, BQk> = 0 for Im - k > 4. 
Therefore, the residuals in the Gaussian basis can be computed from (A4.15), 

(A4.16). The numbers Bm,k are determined by simple recursion relations. (See 
formulas (A6.1) and (A6.3) in Appendix 6.) 

Appendix 5. Convergence of the Eigenvalues and Eigenfunctions. For the 
Gaussian and Ising bases we have the following 

THEOREM. Fix j > 0. Then for every k > 0 there are constants c1 and c2 so that for 
all n > no(j) (independent of k) 

(A5.1) jEjn) - Eil < c1nk, 

(A5.2) 1p(n) - *Ejll < C2n . 
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[We sketch a proof for the Gaussian basis. Various proofs of convergence of 
Rayleigh-Ritz-Galerkin methods may be found in [16]-[18]. A nice proof for the 
case of finite elements is in (191.1 

Proof of (A5.1). Let {Q()l}2 be the Hermite functions given by (3.1)-(3.3), and 
let P,, denote orthogonal projection onto 9(n) = span{Qj>}j.. From the minimax 
principle we have 

(A5.3) EjE(n)= min max K4 H4> 
9Vn) C:cVn) 43CKn) < iJ A> 

where 9(n) denotes a (j + 1)-dimensional subspace of 91n). If Vj _ span{4,}/kk0 
and Vi(n) = span { P"nk)-O, then Vi(n) is ( I + 1)-dimensional for n sufficiently large 
because the Gram matrix [<Pn4,1 Pn.4k>Y1,k=O approaches the identity matrix as 
n - oo. Thus (A5.3) becomes 

0 E(n) - E< 41, H4, > <K4,,H4>_ 
j < )j < max Ej = max K4j, HH4f,> 

mx<PAI,,HPnO, _ _a < 41 Hip > (A5.4) max <Pn4l, Pn4> -max <+ 0 

? max _ 34,H1 
Pe vj < <P 4j, Pn 4> > 

114'II =1 

Since IPn 4'II < 1 and IIPn,4I- 1, we may write IPn4ll -2 = 1 + en, where en > 0 
and en ->0. From (A5.4) we get 

(A5.5) 0 < EJ'(n)- 
_ 

max 
[EP 4<p HPn,>- K4, 

Hl> 
+ en<P,4, HPn4>] 

114'II== 

However, 

K<Pn",4 HPA4> - <K, H4,>I 

(A5.6) =I<(Pno - 4,), HPn4> + <4,, H(Pn4 - 0)>I 

< IH1'2(pn4j - 0)11 IIH"2Pn4II +IIH4,1I 11(4 - (Pn 4-)1I. 

For e - Vj we have 

1,2(p~~~ 
(A5.7) IIH "2(P4 - 4,)jI = <(PnA4 - 4,), H(Pn4 - 4,)> 

< C(Pn4 - 4), A2(Pno -_ 4)> = C//A(Pn4i -4)2 

where A is the Hermite operator whose eigenfunctions are {0j}. (A5.7) follows 
from the observation that H = A + B, where B is a fourth degree polynomial, and 
there exists a constant C so that as forms on S 0 S 

(A5.8) H < CA2. 

Thus, for some constant D, 

0 < E(n) -E 

(A5.9) < D max [ljA(Pni4 
- 4,)/I /|A4,/| + /JH4,jJ I/Pn4 

- 4,11 + en/JA4,12]. 

114'11 = 
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The right side of (A5.9) tends to zero as n -> oo because IIAP12iP - Ai+II = IIPJ(A4) 
- A4ip . To see that the convergence is faster than any power of n-1, note that 
VJ = span{'klYk-0 c S since each 4ij e S [20], [21]. 

Since the Hermite expansion 4i = , c*Q, of a function 4' E S has coefficients 
which decay faster than any power of 1-', (A5. 1) follows from (A5.9). 

Proof of (A5.2). Note that 

j1 7 j || jll nA| + Ilpn 4,j 
j 

+ , A>()j x>n| 

+I11(4)j, 4pn))RIn) - 4,1n11 
However, if we choose the phase of 4A1>) so that <4j, if(n)> > 0, then 

11(x;j, 441n))4)(n5,(n) = 1 - (x{/ tp5n)) 

< (1 - ( t p5n) ) ) 11 
2-'/2Ip1 ,5n)_j. 

Thus, 

1- 4j54I( n ( - 2 1/2)f [114j - p 1jbI +IP,p - (p 4(n))4(n)jII 
Therefore, it suffices to show that IIPnA -<i , 4jp(n)>4j(n)I tends to zero faster than 
any power of n-. Observe that 

n 
IIP., - (4, )P(n44 E()lII = E (P 44fl))2 

k-0 
k#j 

We estimate this sum by noting 

(Pnp, H44j, )) = (4pj, PnH4s)) - E,t)(Pn 4j, p(nl), 

(PPn H4j, 4412)) = Ej (pn4p, 441)), 
so that 

(Pn pj, 44()) = (Ej - E-P)) )PnH(I- Pn) 4 41 )). 

Since the eigenvalues Ej are nondegenerate, and since Ek(n) can be made uniformly 
close to Ek (for k = 0, 1, . . . , j + 1) when n is sufficiently large (by (A5. 1)), there 
is a 8 > 0 such that 0 < 8 < 1Ej - Ek) for k #j when n is sufficiently large. 

Hence, 

lip tj- (4,' 4(n))4;(n)jj 2 - -211 p)I2 
n 

= 3-2 <Q 
k, H(I- - 

j> 
k=O 

n oo 2 
= 3-2 

1: E <Uk, H 1><Qj, 4y> 
k=O l=n+l 

Because of the form of H, the last expression is equal to 
n k+4 2 

(A5.1I0) a-2 E) E <Qk, HQI><Qj, Oj> 
k=n-3 I=n+l1 

It follows from (A6.4) that the terms <Qk, HUI> are 0(n2) in the appropriate range 
of k, 1. Thus, (A5. 10) decays faster than any power of n'-, because the coefficients 
<Kl, j>> decay faster than any power of I - 1. 
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We do not give the proof of convergence for the Ising basis. However, we remark 
that since finite linear combinations of Ising basis elements fJe and 4fj yield the 
Hermite functions QJ+ and UJ-, the eigenvalues found using the Ising basis are 
squeezed between the true eigenvalues and those of a Hermite operator localized in 
one of the two wells. A simple modification of the above proof then shows that the 
eigenvalues found using the Ising basis satisfy (A5. 1). 

We conjecture that the true rate of convergence is exponential. This would 
follow if the eigenfunctions of H were analytic vectors of some power of A. 

Appendix 6. Formulas for Some Matrix Elements. We consider only the Gaussian 
basis and derive explicit formulas for the elements of the infinite matrix H. 

Define 

(A6.1) Xj, -<j, xnQ> 

(A6.2) pjn = (Qj, (- i( dldx) k 

Then we have the recursion relations 

?= = Po k (Kronecker delta), 

(A6.3) XJ= (2a)/2[(j + I)"/nA +jl/2Xn-Ii ] 

PJ'k = i(a/2) " [( + l)12P.njl jl/2pn-1k]. 

It follows from (2.1) and (A6.1)-(A6.3) that 

Hj,k- <j, H&2k> 

= (1/4)[(a2 + ca-2 + (3/2)da-4)(2j + 1) + 3da-j2 + 2e]Sjk 

+ (l/4)(j2 _ j)1/2[ _ a2 + ca -2 + da -4(2j - 1)]61,k+2 

(A6.4) + (I /4)(k2 - k)1/2[ -a2 + ca -2 + da -4(2k - 1) ] 6J+2,k 

+ (1/8)da 4[j(j - 1)(j - 2)(j - 3)]1/2j 

+ (1/8)da 4[k(k - l)(k - 2)(k - 3) ] j/2+4,k. 

This is a nine-diagonal band matrix which reduces to a pentadiagonal band matrix 
in each subspace 9Ce, Co. 
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